
pryv Documentation
Release 1.0.0a1

Léopold Houdin

Nov 04, 2018

Contents

1 Quickstart 1

2 Packages 5
2.1 Core concepts . 5
2.2 Uploading a package . 10
2.3 Using a package . 12

3 Users 15
3.1 users.json . 15
3.2 .htpasswd . 15

4 Configuration 17
4.1 Core . 18
4.2 User . 18
4.3 Server . 19

5 Reference 21
5.1 pryv.core . 22
5.2 pryv.user . 22
5.3 pryv.api . 22
5.4 pryv.explorer . 22
5.5 pryv.proxy . 22
5.6 pryv.config . 31
5.7 pryv.app . 33
5.8 pryv.cli . 33

6 Contributing 35
6.1 Reporting a bug or submitting a feature request . 35
6.2 Contributing code . 36
6.3 Contributing documentation . 38

7 Changelog 39
7.1 1.X.X . 39

Python Module Index 41

i

ii

CHAPTER 1

Quickstart

If you want to quickly have a server running up so to publish, install and explore packages, you found the right place!
This page will guide you in the very first steps of installing and configuring a pryv server.

pryv is available on https://pypi.org. Use the following command to install it:

pip install pryv

You can as well install pryv in a virtualenv, however it is not recommended for production environment.

Now that pryv is installed on your machine, you can start it by using:

pryv start

The api and the explorer are then available. Open your browser and navigate to http://127.0.0.1:5555. You should land
on pryv’s setup interface, that looks like this:

1

https://pypi.org
http://127.0.0.1:5555

pryv Documentation, Release 1.0.0a1

Once you have filled in the username, password and password confirmation fields, click on the start button. You have
just created your first user and pryv is now ready for use. You should land on a page that looks like:

2 Chapter 1. Quickstart

pryv Documentation, Release 1.0.0a1

As mentioned on the above image, we now recommend you to have a look at the packages section in order to read
more about how to create projects, upload and install packages to and from your pryv server.

You could as well visit the configuration section to learn more on how to configure pryv to meet your requirements.

3

pryv Documentation, Release 1.0.0a1

4 Chapter 1. Quickstart

CHAPTER 2

Packages

Publishing to your pryv server allows you to manage your private projects and packages. It also enables you, and
others, to access and install your private libraries and applications while keeping them out of public visibility and use.
In this section, you will find details on the core concepts of pryv and guides on how to publish and install packages to
and from pryv.

2.1 Core concepts

The fundamentals behind pryv mechanisms are pretty simple. In this section, we provide details on the model used by
pryv and explain what each entity was designed for and how to manage it.

These were not invented by pryv’s creators. They are only formalized here, for their use in the context of pryv.

2.1.1 Overview

The following figure provides an overview of the different entities and their relation. A detailed description is provided
for each of them below.

2.1.2 Project

A project is a set of source files that aim at solving a problem. In pryv, a project is a collection of releases and is
identified by its name.

Different projects in pryv must have different names. The name used by pryv to resolve a project is its normalized
Python name (see PEP 503 for details). Hence several projects with names that evaluate to the same normalized
name are considered as the same project by pryv (for example my-project, my.project and My_Project
all evaluate to the normalized name my-project and thus are considered as a single project named my-project).

When uploading a package to pryv, you automatically create a project and its associated release.

You can see all projects that were created in your pryv server by browsing the explorer to the projects page. The
following image shows an example:

5

https://www.python.org/dev/peps/pep-0503/#id4

pryv Documentation, Release 1.0.0a1

By clicking on a project you access the project’s details:

6 Chapter 2. Packages

pryv Documentation, Release 1.0.0a1

2.1.3 Release

A release is a snapshot of a project at a given time. It is uniquely identified within a project by its version number (see
PEP 440 for details).

When uploading a package to pryv, you automatically create a release. The first time you upload a package, you will
create a release for a project. Subsequent package uploads will create a new release only for releases with a new
version number (i.e. only if no release with the same version number exist in pryv).

You can see all releases of a project by going to the Releases tab of the project’s page:

2.1. Core concepts 7

https://www.python.org/dev/peps/pep-0440/

pryv Documentation, Release 1.0.0a1

2.1.4 Metadata

Metadata provide information on a release (see PEP 566 for details). They are loaded when uploading a package to
pryv. Subsequent uploads of packages to the same release with different metadata overwrite the original metadata.

Metadata are defined in the setup.py file of a project (see something for details). Using a tool, such as Twine or
Setuptools, for uploading your packages ensures metadata are correctly provided.

The list of metadata fields supported by pryv is:

• metadata_version: Only metadata with version 2.1 were tested. Other versions of metadata are not
guaranteed to work.

• name: This field is used to determine the name of the project.

• version: This field is used to determine the version of the release.

• summary

• description: This field is used to display the project’s description.

• description_content_type: This field is used to determine the description’s content type. Currently
only text/x-rst is supported. Other content types might be incorrectly rendered.

• keywords

8 Chapter 2. Packages

https://www.python.org/dev/peps/pep-0566/
https://twine.readthedocs.io
https://setuptools.readthedocs.io

pryv Documentation, Release 1.0.0a1

• home_page

• download_url

• author

• author_email

• maintainer

• maintainer_email

• license

• classifiers

• requires_dist

• requires_python

• requires_external

• project_url

• provides_extra

2.1.5 Package

A package is a file that contains everything required for others to use a specific release of a project. There might be
several packages per project’s release. This is up to you.

Read the uploading and using sections to learn more about how to upload and use packages to and from pryv.

You can see all packages that belong to a project’s release by going to the Packages tab of the project’s page:

2.1. Core concepts 9

pryv Documentation, Release 1.0.0a1

2.2 Uploading a package

2.2.1 Prerequisites

pryv expects packaged Python’s file to be uploaded. We assume you have basic skills on packaging your code. We
only provide a quick overview on how to proceed.

You need to install Setuptools on your machine:

pip install --upgrade setuptools

You should architecture your project’s directory similarly to the following:

myproject/
setup.py
myproject/
__init__.py
other modules...

A minimal setup.py file looks like the following:

10 Chapter 2. Packages

https://setuptools.readthedocs.io

pryv Documentation, Release 1.0.0a1

from setuptools import setup, find_packages

setup(
name = 'MyProject',
version = '1.0.0',
url = 'https://github.com/me/myproject.git',
author = 'Me',
author_email = 'me@gmail.com’,
description = 'Short description of my project',
packages = find_packages(),
install_requires = [],

)

Now, in order to upload your project to pryv, you’ll need to package it. You can do the following:

python setup.py sdist bdist_wheel

Note: To ensure your project’s packages to not be published on the public Pypi, you can add the following to your
setup.py:

setup(
...
classifiers=[

'Private :: Do Not Upload to pypi server',
],

)

See also:

• Packages - Python’s official documentation

• Packaging Python Projects - Python’s official documentation

2.2.2 Uploading a package with Twine

You can upload your packages to pryv using Twine.

First, install setuptools and twine:

pip install --upgrade setuptools twine

Then you should package your code using setuptools. Use the following for both source and wheel distributions:

python setup.py sdist bdist_wheel

Finally, you upload your freshly built distribution using:

twine upload --repository-url http://username:password@127.0.0.1:5555/simple dist/*

Alternatively, if you don’t want to write the URL to your pryv server each time you upload a package, you can use a
.pypirc configuration file. To do so, create a .pypirc file either at the root of your project’s directory or in your
home directory (i.e. ~/.pypirc). Set its content to:

2.2. Uploading a package 11

https://docs.python.org/2.7/tutorial/modules.html#packages
https://packaging.python.org/tutorials/packaging-projects/
https://twine.readthedocs.io

pryv Documentation, Release 1.0.0a1

[distutils]
index-servers =

pryv

[pryv]
repository = http://127.0.0.1:5555/simple
username =
password =

You can now use the following shorthand syntaxes for uploading. If you created the .pypirc file at the root of your
project’s directory:

twine upload --config-file .pypirc --repository pryv dist/*

Or, if you created a ~/.pypirc file:

twine upload --repository pryv dist/*

See also:

• Twine - Project on Pypi

• Twine - Documentation on Read the Docs

2.2.3 Uploading a package with Setuptools

You can also upload your packages to pryv by simply using Setuptools:

python setup.py sdist bdist_wheel upload --repository pryv

Note: In the above example, we assume that a ~/.pypirc file exists with a pryv index server configured, as
detailed in the Twine paragraph.

Warning: Uploading packages with Setuptools is now deprecated. Use Twine instead.

pryv was tested with Setuptools, but no maintenance is guaranteed on this feature. You should consider using
Twine for compatibility.

See also:

• Setuptools - Documentation on Read the Docs

• distutils - Official Python’s documentation - The Python Package Index (PyPI)

2.3 Using a package

Using a package uploaded to pryv is pretty simple. You will need pip to be installed.

To install a package uploaded to pryv, use the following:

pip install myproject --index-url http://username:password@127.0.0.1:5555/simple

12 Chapter 2. Packages

https://pypi.org/project/twine/
https://twine.readthedocs.io/en/latest/
https://setuptools.readthedocs.io
https://twine.readthedocs.io
https://twine.readthedocs.io
https://setuptools.readthedocs.io
https://docs.python.org/2/distutils/packageindex.html
https://pip.pypa.io

pryv Documentation, Release 1.0.0a1

Note: If your pryv server is accessed by HTTPS, you might consider using:

pip install myproject \
--index-url https://username:password@pryv.host.com/simple \
--trusted-host pryv.host.com

Alternatively, if you don’t want to write the URL to your pryv server each time you install a package, you can use a
pip.conf file located under ~/.pip (i.e. ~/.pip/pip.conf). Set its content to:

[global]
extra-index-url = https://username:password@pryv.host.com/simple
trusted-host = pryv.host.com

Now, you are able to install packages as usual, directly from your pryv repository:

pip install myproject

2.3. Using a package 13

pryv Documentation, Release 1.0.0a1

14 Chapter 2. Packages

CHAPTER 3

Users

Users management in pryv is done by editing files. You can use either:

• users.json (which path can be set using the user path option)

• .htpasswd (which path can be set using the htpasswd path option).

Currently, you can only use either, not both. If the htpasswd-path configuration option is set, the user-path
option will be ignored.

3.1 users.json

This is a flat JSON file, with one field per user, its username. Each user entry has one field, the user’s password hash
(SHA-256).

Its content looks like:

{
"user1": {
"password": "superlongsha256"

},
"user2": {
"password": "anothersuperlongsha256"

}
}

To add a new user, simply add a new entry to this file.

3.2 .htpasswd

This file uses Apache’s .htpasswd file format (see apache’s documentation for details).

15

https://httpd.apache.org/docs/current/programs/htpasswd.html

pryv Documentation, Release 1.0.0a1

Use this file if you want to share your users credentials among several applications using .htpasswd files on your
machine.

16 Chapter 3. Users

CHAPTER 4

Configuration

pryv can be configured using a configuration file. By default, the configuration is read from ~/.pryv/pryv.ini,
however you can set the path to the configuration path be either using the PRYV_CONFIG_PATH environment variable
or by setting the -c/--config option at start-up, i.e.:

pryv start -c path/to/pryv.ini

The configuration file has the following format:

Comments
[section]
option1 = value1
option2 = value2

pryv uses three different sections:

• Core

– Projects path

– Packages path

• User

– Users path

– .htpasswd path

• Server

– Host

– Port

– Secret key

– Debug

17

pryv Documentation, Release 1.0.0a1

4.1 Core

This section configures the core of pryv: where projects data and packages are stored.

4.1.1 Projects path

This option defines the path to the directory where projects data are stored.

Usage

[core]
projects-path = file:///path/to/projects

Default

file://~/.pryv/projects

4.1.2 Packages path

This option defines the path to the directory where packages are stored.

Usage

[core]
packages-path = file:///path/to/packages

Default

file://~/.pryv/packages

4.2 User

This section configures the path to the files were users data are loaded from. These files are used to load authentication
data.

4.2.1 Users path

This option defines the path to the file where users data are stored.

Note: If the htpasswd-path option is set, this option is not used.

Warning: The users file contains sensitive data (username and password hash). Make sure its location is safe.

Usage

[user]
users-path = file:///path/to/users.json

18 Chapter 4. Configuration

pryv Documentation, Release 1.0.0a1

Default

file://~/.pryv/users.json

4.2.2 .htpasswd path

This option defines the path to the .htpasswd where users credentials are stored. Use this option if you want to
share the credentials among different servers on the same machine. The file at the configured path is expected to be
.htpasswd file that meets the required format (see apache’s documentation for details).

Usage

[user]
htpasswd-path = file:///path/to/.htpasswd

Default: None

4.3 Server

This section configures the server’s options.

4.3.1 Host

This option defines the host name the server listens to. By default, it is set such that the server only listens for requests
from the same machine (i.e. 127.0.0.1). Set its value to 0.0.0.0 to listen to everyone.

Usage

[server]
host = 123.234.123.234

Default

127.0.0.1

4.3.2 Port

This options defines the port the server listens to.

Usage

[server]
port = 1234

Default

5555

4.3. Server 19

https://httpd.apache.org/docs/current/programs/htpasswd.html

pryv Documentation, Release 1.0.0a1

4.3.3 Secret key

This option defines the secret key used by the explorer to sign cookies.

Usage

[server]
secret-key = super-secret-key

Default: By default, the server generates a new random secret key each time you start it. It uses the host operating
system’s urandom function.

Note: Generating a new random secret key at each start up means all old sessions are obsolete. The users will have
to login again.

4.3.4 Debug

This option defines whether the server should show logs or not. If set, logs will be shown on request.

Usage

[server]
debug = true

Default: None

20 Chapter 4. Configuration

CHAPTER 5

Reference

Warning: This section is not meant for pryv’s users, but targets developers.

This section provides with the reference for pryv’s internals.

21

pryv Documentation, Release 1.0.0a1

5.1 pryv.core

5.1.1 pryv.core.project

5.1.2 pryv.core.release

5.1.3 pryv.core.metadata

5.1.4 pryv.core.package

5.2 pryv.user

5.3 pryv.api

5.3.1 pryv.api.simple

5.3.2 pryv.api.package

5.4 pryv.explorer

5.4.1 pryv.explorer.auth

5.4.2 pryv.explorer.project

5.5 pryv.proxy

This module defines proxy access functions to file storage. It enables manipulating files in the local file system and
AWS S3 in a unified way.

pryv.proxy.ensure_directory(*paths)
Gets a file system proxy to the given root path and ensures it is a directory.

Parameters paths (str) – The components of the root path.

Returns A file system proxy.

Return type FileSystemProxy

pryv.proxy.get(*paths)
Gets a proxy to the root path.

Parameters paths (str) – The components of the root path.

Returns A file system proxy.

Return type FileSystemProxy

5.5.1 pryv.proxy.base

This module defines the FileSystemProxy and FileProxy classes. These are the base classes for the file
proxies.

22 Chapter 5. Reference

pryv Documentation, Release 1.0.0a1

class pryv.proxy.base.FileProxy
Bases: object

This class defines a file proxy.

A file proxy enables to manipulate files located on the local system or on an AWS S3 bucket in the same manner.

__init__()
Creates a new file proxy.

flush()
Flushes the file proxy.

Warning: To override.

read(size=0)
Reads data from the file proxy.

Warning: To override.

Parameters size (int) – The number of bytes to read.

Returns Data read.

readline()
Reads a line of data from the file proxy.

Warning: To override.

Returns Data read.

write(data)
Writes data to the file proxy.

Warning: To override.

Parameters data – The data to write.

class pryv.proxy.base.FileSystemProxy
Bases: object

This class defines a file system proxy.

A file system proxy enables interacting files located on different storage in an unified manner.

__init__()
Creates a new abstract file system proxy.

exists(*paths, **kwargs)
Gets a value indicating whether the file at the given path exists or not.

5.5. pryv.proxy 23

pryv Documentation, Release 1.0.0a1

Note: The path can be given either as a single parameter or by components.

Parameters path – The path to the file.

Type path: str

Returns True if the path targets a file that exist; False otherwise.

Return type bool

is_directory(*paths, **kwargs)
Gets a value indicating whether the file at the given path is a directory or not.

Note: The path can be given either as a single parameter or by components.

Parameters path – The path to the file.

Type path: str

Returns True if the path targets a directory; False otherwise.

Return type bool

is_file(*paths, **kwargs)
Gets a value indicating whether the file at the given path is a file or not.

Note: The path can be given either as a single parameter or by components.

Parameters path – The path to the file.

Type path: str

Returns True if the path targets a file; False otherwise.

Return type bool

list_directories(*paths, **kwargs)
Lists the directories located at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters

• path – The path.

• exclude (list) – A list of directory names to exclude.

Type path: str

Returns A list of directory names.

Return type list

24 Chapter 5. Reference

pryv Documentation, Release 1.0.0a1

list_files(*paths, **kwargs)
Lists the files located at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters

• path – The path to the file.

• exclude (list) – A list of file names to exclude.

Type path: str

Returns A list of file names.

Return type list

make_directory(*paths, **kwargs)
Creates a directory at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters path – The path.

Type path: str

open_file(*paths, **kwargs)
Opens the file located at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters

• path – The path to the file.

• mode (str) – The opening mode (r or w).

Type path: str

Returns A file instance.

Return type FileProxy

remove_file(*paths, **kwargs)
Removes the file located at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters path – The path to the file.

Type path: str

pryv.proxy.base.join_path(*paths)
Joins the given path components into a single path.

5.5. pryv.proxy 25

pryv Documentation, Release 1.0.0a1

Parameters paths (str) – The path components.

Returns A path.

Return type str

pryv.proxy.base.with_path(func)
Decorates the given function as requiring a path. It converts the given path components into a single path.

Parameters func (function) – The function to decorate.

Returns A decorated function.

Return type function

5.5.2 pryv.proxy.local

This module defines the LocalFileSystemProxy and LocalFileProxy classes that enable manipulating files
on the local file system.

class pryv.proxy.local.LocalFileProxy(path, mode)
Bases: pryv.proxy.base.FileProxy

This class defines a proxy to a file located on the local file system.

__init__(path, mode)
Creates a new instance of a local file proxy.

Parameters

• path (str) – The path to the file.

• mode (str) – The opening mode of the file.

flush()
Flushes the file proxy.

Warning: To override.

read(size=None)
Reads data from the file proxy.

Warning: To override.

Parameters size (int) – The number of bytes to read.

Returns Data read.

readline()
Reads a line of data from the file proxy.

Warning: To override.

Returns Data read.

26 Chapter 5. Reference

pryv Documentation, Release 1.0.0a1

write(data)
Writes data to the file proxy.

Warning: To override.

Parameters data – The data to write.

class pryv.proxy.local.LocalFileSystemProxy(path)
Bases: pryv.proxy.base.FileSystemProxy

This class defines a proxy to the local file system.

__init__(path)
Creates a new instance of a proxy to the local file system. :param path:

exists(*paths, **kwargs)
Gets a value indicating whether the file at the given path exists or not.

Note: The path can be given either as a single parameter or by components.

Parameters path – The path to the file.

Type path: str

Returns True if the path targets a file that exist; False otherwise.

Return type bool

is_directory(*paths, **kwargs)
Gets a value indicating whether the file at the given path is a directory or not.

Note: The path can be given either as a single parameter or by components.

Parameters path – The path to the file.

Type path: str

Returns True if the path targets a directory; False otherwise.

Return type bool

is_file(*paths, **kwargs)
Gets a value indicating whether the file at the given path is a file or not.

Note: The path can be given either as a single parameter or by components.

Parameters path – The path to the file.

Type path: str

Returns True if the path targets a file; False otherwise.

Return type bool

5.5. pryv.proxy 27

pryv Documentation, Release 1.0.0a1

list_directories(*paths, **kwargs)
Lists the directories located at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters

• path – The path.

• exclude (list) – A list of directory names to exclude.

Type path: str

Returns A list of directory names.

Return type list

list_files(*paths, **kwargs)
Lists the files located at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters

• path – The path to the file.

• exclude (list) – A list of file names to exclude.

Type path: str

Returns A list of file names.

Return type list

make_directory(*paths, **kwargs)
Creates a directory at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters path – The path.

Type path: str

open_file(*paths, **kwargs)
Opens the file located at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters

• path – The path to the file.

• mode (str) – The opening mode (r or w).

Type path: str

28 Chapter 5. Reference

pryv Documentation, Release 1.0.0a1

Returns A file instance.

Return type FileProxy

remove_file(*paths, **kwargs)
Removes the file located at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters path – The path to the file.

Type path: str

pryv.proxy.local.with_full_path(func)
Decorates the given function as requiring a full path. This decorator merges the root path of decorated file
system instance and the given path (either as a single parameter or as a list of path components).

Parameters func (function) – The function to decorate.

Returns A decorated function.

Return type function

5.5.3 pryv.proxy.s3

This module defines the S3FileSystemProxy and S3FileProxy classes that enable manipulating files located
on an AWS S3 bucket.

class pryv.proxy.s3.S3FileSystemProxy(bucket, prefix)
Bases: pryv.proxy.base.FileSystemProxy

This class defines a proxy to a file system located on an AWS S3 bucket.

__init__(bucket, prefix)
Creates a new instance of a proxy to an AWS S3 bucket.

Parameters

• bucket (str) – The name of the bucket.

• prefix (str) – The key prefix to the objects.

exists(*paths, **kwargs)
Gets a value indicating whether the file at the given path exists or not.

Note: The path can be given either as a single parameter or by components.

Parameters path – The path to the file.

Type path: str

Returns True if the path targets a file that exist; False otherwise.

Return type bool

5.5. pryv.proxy 29

pryv Documentation, Release 1.0.0a1

is_directory(*paths, **kwargs)
Gets a value indicating whether the file at the given path is a directory or not.

Note: The path can be given either as a single parameter or by components.

Parameters path – The path to the file.

Type path: str

Returns True if the path targets a directory; False otherwise.

Return type bool

is_file(*paths, **kwargs)
Gets a value indicating whether the file at the given path is a file or not.

Note: The path can be given either as a single parameter or by components.

Parameters path – The path to the file.

Type path: str

Returns True if the path targets a file; False otherwise.

Return type bool

list_directories(*paths, **kwargs)
Lists the directories located at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters

• path – The path.

• exclude (list) – A list of directory names to exclude.

Type path: str

Returns A list of directory names.

Return type list

list_files(*paths, **kwargs)
Lists the files located at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters

• path – The path to the file.

• exclude (list) – A list of file names to exclude.

Type path: str

30 Chapter 5. Reference

pryv Documentation, Release 1.0.0a1

Returns A list of file names.

Return type list

make_directory(*paths, **kwargs)
Creates a directory at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters path – The path.

Type path: str

open_file(*paths, **kwargs)
Opens the file located at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters

• path – The path to the file.

• mode (str) – The opening mode (r or w).

Type path: str

Returns A file instance.

Return type FileProxy

remove_file(*paths, **kwargs)
Removes the file located at the given path.

Note: The path can be given either as a single parameter or by components.

Parameters path – The path to the file.

Type path: str

5.6 pryv.config

This module defines the configuration interface. It reads the file file://~/.pryv/pryv.ini and exposes its
values.

The Config and ConfigSection wrap the class ConfigParser.ConfigParser in order to enable one to
access configuration section and options directly from the code, i.e. using attribute notation. In addition, it handles
automatically default values.

class pryv.config.Config(path=’file://~/.pryv/pryv.ini’)
Bases: object

This class defines a configuration object. It is a wrapper around the standard ConfigParser.
ConfigParser class.

5.6. pryv.config 31

pryv Documentation, Release 1.0.0a1

It is designed as a convenience class to access configuration sections and options from code and return default
values dynamically.

Example:

config = pryv.config.Config()

config.my_section.my_option # -> my-value

__init__(path=’file://~/.pryv/pryv.ini’)
Creates a new instance of a configuration object. This method loads the configuration from the file
file://~/.pryv/pryv.ini.

Parameters path (str) – The path to the configuration file.

class pryv.config.ConfigSection(name, options)
Bases: object

This class defines a configuration section.

It is designed as a convenience class to access configuration options from code and set default values to options
that are not present in the configuration file.

Example:

section = pryv.config.ConfigSection('my-section', {'my-option': 'my-value'})

section.my_option # -> my-value

Assuming my-other-option has for default value my-other-value
section.my_other_option # -> my-other-value

__init__(name, options)
Creates a new instance of a configuration section.

Parameters

• name (str) – The name of the section.

• options (dict) – The options of the section.

set(option_name, option_value)
Sets the value of the option with the given name.

Parameters

• option_name (`str) – The name of the option.

• option_value – The value of the option.

pryv.config.init(path)
Initializes the configuration to read options from the file with the given path.

Note: The path can be either a path to a file on the local file system (i.e. not prefixed or using the file://
prefix) or a file located on an AWS S3 bucket (i.e. using the s3:// prefix).

Parameters path (str) – The path to the configuration file.

pryv.config.pythonize_name(name)
Pythonizes an option name.

32 Chapter 5. Reference

pryv Documentation, Release 1.0.0a1

Example:

pythonize_name('my-option') # -> my_option

Parameters name (str) – The name to pythonize.

Returns A pythonized name.

Return type str

pryv.config.unpythonize_name(name)
Unythonizes an attribute name.

Example:

unpythonize_name('my_option') # -> my-option

Parameters name (str) – The name to unpythonize.

Returns An option name.

Return type str

5.7 pryv.app

5.8 pryv.cli

This module defines pryv’s Command Line Interface. It defines the interface’s groups and commands.

pryv.cli.start_options(cmd)
Applies the start options to the given command.

Parameters cmd (function) – The command.

Returns A command.

Return type function

5.7. pryv.app 33

pryv Documentation, Release 1.0.0a1

34 Chapter 5. Reference

CHAPTER 6

Contributing

pryv welcomes all contributions! Whether you want to report a bug, request a new feature, contribute code or docu-
mentation, you found the right place.

• Reporting a bug or submitting a feature request

• Contributing code

– Version control

– Getting the code

– Isolating your environment

– Creating a branch

– Commiting code

– Pushing changes

– Opening a pull request

• Contributing documentation

6.1 Reporting a bug or submitting a feature request

If you want to either report a bug or request a feature, you should create a new issue on Github.

For bug reports, include the version of pryv you observer the bug to happen. You can get pryv’s version by running:

pryv version

35

https://github.com/leopoldhoudin/pryv/issues/new?template=bug_report.md
https://github.com/leopoldhoudin/pryv/issues/new?template=feature_request.md
https://github.com/leopoldhoudin/pryv/issues

pryv Documentation, Release 1.0.0a1

6.2 Contributing code

If you want to contribute with code, the following guide is made for you. You might also want to have a look at the
reference.

6.2.1 Version control

pryv is versioned using Git and its code is available on Github on its main repository. To contribute with code to pryv
you will need to create a Github account.

6.2.2 Getting the code

The easiest and preferred way to contribute to pryv is to fork its main repository on Github. To do so, browse the
project’s repository and click on the Fork button.

Now, clone the forked project to your local machine:

git clone git@github.com:your-username/pryv.git

6.2.3 Isolating your environment

In order not to pollute your local setup and to ensure you are using the same environment as the one required by pryv,
you should use a virtual environment. virtualenv is the preferred method.

Install it using pip:

pip install --upgrade virtualenv

Go to the root directory of pryv and create a virtualenv (named venv for example) using:

virtualenv venv

Enter (activate) the virtualenv (note that you need to do the following command each time you want to enter
the virtualenv):

source venv/bin/activate

You can now develop and issue all required installations without polluting your machine’s Python environment.

When you are finished developing, you can exit the virtualenv using:

deactivate

6.2.4 Creating a branch

Never work directly on master, always branch before making any changes. Grab ID of the issue you target.

If the issue is a feature request, use the following to create a new branch:

git checkout -b feat/123-short-description

If the issue is a bug, use:

36 Chapter 6. Contributing

https://github.com/
https://github.com/leopoldhoudin/pryv
https://github.com/join
https://github.com/leopoldhoudin/pryv
https://github.com/leopoldhoudin/pryv
https://virtualenv.pypa.io

pryv Documentation, Release 1.0.0a1

git checkout -b fix/123-short-description

123 is to be replaced with the ID of the issue and short-description is a short description of the issue. Its
value is up to you, just try to be as specific and concise as the same time (i.e. max 3 words). Use hyphences (-) in
place of spaces.

6.2.5 Commiting code

Try to commit your code regularly. Commit files and changes related to each other.

pryv uses a similar commit naming convention than the Angular’s one:

<type>(<scope>): <subject>

- details description
- details description

<footer>

where <type> can be:

• feat: for new feature

• fix: for bug fix

• refactor: for code refactoring

• style: for code formatting

• test: when adding tests or updating existing ones

• chore: for maintenance

<scope> is the scope of the change:

• for meta scopes:

– readme

– doc

– setup

• for modules and packages:

– core

– api

– config

– cli

– . . .

and <subject> is a small description of the change starting with an imperative (change, add, fix, not changed
nor fixing), in lower case, with no punctuation (i.e. no final .).

The body of the message (optional, but recommended for bigger commits) must be a list of detailed changes, using
imperative tenses as well, in lower case, without punctuation.

The footer (optional) can be:

6.2. Contributing code 37

https://gist.github.com/stephenparish/9941e89d80e2bc58a153#format-of-the-commit-message

pryv Documentation, Release 1.0.0a1

Closes #123

if the commit closes an issue. For a commit that closes several issues, use:

Closes #123, #456, #789

6.2.6 Pushing changes

Once you have finished modifying the code (don’t forget to update the documentation), you can push your local
changes to Github using:

git push origin feat/my-branch

6.2.7 Opening a pull request

To merge your changes into pryv’s main repository, you will have to open a pull request.

To do so, go to your repository on Github, click on the Pull request button. Make sure all commits and all changes
are there, then fill in the pull request’s description and click on the Send pull request button.

Your changes are now sent to pryv’s maintainers for code review. They might accept your changes or request modifi-
cations before merging to pryv’s code base.

6.3 Contributing documentation

pryv uses reStructuredText and Sphinx for its documentation. It is located in the docs/ directory of the project (and
in the source file for packages, modules, classes and functions documentation).

Since contributing documentation is in many manner, and in particular since documentation is code, you should have
a look at the contributing code paragraph of this page.

Building the documentation is all automated thanks to tox. Install it using:

pip install --upgrade tox

Then, build the documentation using:

tox -e docs

38 Chapter 6. Contributing

https://github.com/leopoldhoudin/pryv
https://help.github.com/articles/about-pull-requests/
http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org
http://tox.readthedocs.io

CHAPTER 7

Changelog

7.1 1.X.X

7.1.1 1.0.X

1.0.0

• Initial release

39

pryv Documentation, Release 1.0.0a1

40 Chapter 7. Changelog

Python Module Index

p
pryv.cli, 33
pryv.config, 31
pryv.proxy, 22
pryv.proxy.base, 22
pryv.proxy.local, 26
pryv.proxy.s3, 29

41

pryv Documentation, Release 1.0.0a1

42 Python Module Index

Index

Symbols
__init__() (pryv.config.Config method), 32
__init__() (pryv.config.ConfigSection method), 32
__init__() (pryv.proxy.base.FileProxy method), 23
__init__() (pryv.proxy.base.FileSystemProxy method), 23
__init__() (pryv.proxy.local.LocalFileProxy method), 26
__init__() (pryv.proxy.local.LocalFileSystemProxy

method), 27
__init__() (pryv.proxy.s3.S3FileSystemProxy method),

29

C
Config (class in pryv.config), 31
ConfigSection (class in pryv.config), 32

E
ensure_directory() (in module pryv.proxy), 22
exists() (pryv.proxy.base.FileSystemProxy method), 23
exists() (pryv.proxy.local.LocalFileSystemProxy

method), 27
exists() (pryv.proxy.s3.S3FileSystemProxy method), 29

F
FileProxy (class in pryv.proxy.base), 22
FileSystemProxy (class in pryv.proxy.base), 23
flush() (pryv.proxy.base.FileProxy method), 23
flush() (pryv.proxy.local.LocalFileProxy method), 26

G
get() (in module pryv.proxy), 22

I
init() (in module pryv.config), 32
is_directory() (pryv.proxy.base.FileSystemProxy

method), 24
is_directory() (pryv.proxy.local.LocalFileSystemProxy

method), 27
is_directory() (pryv.proxy.s3.S3FileSystemProxy

method), 29

is_file() (pryv.proxy.base.FileSystemProxy method), 24
is_file() (pryv.proxy.local.LocalFileSystemProxy

method), 27
is_file() (pryv.proxy.s3.S3FileSystemProxy method), 30

J
join_path() (in module pryv.proxy.base), 25

L
list_directories() (pryv.proxy.base.FileSystemProxy

method), 24
list_directories() (pryv.proxy.local.LocalFileSystemProxy

method), 27
list_directories() (pryv.proxy.s3.S3FileSystemProxy

method), 30
list_files() (pryv.proxy.base.FileSystemProxy method),

24
list_files() (pryv.proxy.local.LocalFileSystemProxy

method), 28
list_files() (pryv.proxy.s3.S3FileSystemProxy method),

30
LocalFileProxy (class in pryv.proxy.local), 26
LocalFileSystemProxy (class in pryv.proxy.local), 27

M
make_directory() (pryv.proxy.base.FileSystemProxy

method), 25
make_directory() (pryv.proxy.local.LocalFileSystemProxy

method), 28
make_directory() (pryv.proxy.s3.S3FileSystemProxy

method), 31

O
open_file() (pryv.proxy.base.FileSystemProxy method),

25
open_file() (pryv.proxy.local.LocalFileSystemProxy

method), 28
open_file() (pryv.proxy.s3.S3FileSystemProxy method),

31

43

pryv Documentation, Release 1.0.0a1

P
pryv.cli (module), 33
pryv.config (module), 31
pryv.proxy (module), 22
pryv.proxy.base (module), 22
pryv.proxy.local (module), 26
pryv.proxy.s3 (module), 29
pythonize_name() (in module pryv.config), 32

R
read() (pryv.proxy.base.FileProxy method), 23
read() (pryv.proxy.local.LocalFileProxy method), 26
readline() (pryv.proxy.base.FileProxy method), 23
readline() (pryv.proxy.local.LocalFileProxy method), 26
remove_file() (pryv.proxy.base.FileSystemProxy

method), 25
remove_file() (pryv.proxy.local.LocalFileSystemProxy

method), 29
remove_file() (pryv.proxy.s3.S3FileSystemProxy

method), 31

S
S3FileSystemProxy (class in pryv.proxy.s3), 29
set() (pryv.config.ConfigSection method), 32
start_options() (in module pryv.cli), 33

U
unpythonize_name() (in module pryv.config), 33

W
with_full_path() (in module pryv.proxy.local), 29
with_path() (in module pryv.proxy.base), 26
write() (pryv.proxy.base.FileProxy method), 23
write() (pryv.proxy.local.LocalFileProxy method), 26

44 Index

	Quickstart
	Packages
	Core concepts
	Uploading a package
	Using a package

	Users
	users.json
	.htpasswd

	Configuration
	Core
	User
	Server

	Reference
	pryv.core
	pryv.user
	pryv.api
	pryv.explorer
	pryv.proxy
	pryv.config
	pryv.app
	pryv.cli

	Contributing
	Reporting a bug or submitting a feature request
	Contributing code
	Contributing documentation

	Changelog
	1.X.X

	Python Module Index

